CDRL 01000

CDRL 01000 The BOEING Company
TASK BR24 D613-11000

AD-A240 474
LT —
Software Technology- for Adaptable,
Reliable Systems (STARS)
DTIC

Submitted to: ELECTE
seP11 1991 B

Electronic Systems Division:

Air Force Systems Command, USAF:
Hanscom AFB, MA 01731-5000: c
Contract No: '
F19628—88—D—0028 f
* .
CDRL 1600
BR24 Final Report
Q
D=
July 1, 1990 S =
2=
The Boeing Company | =
Space and Defense Group ;§

Boeing Aerospace and Electronics
P.O. Box 3999
Seadttle, Washington 98124

Approved for public release - distribution is unlimited,

BR24 Final Report

91 9 9 U45 ners-11000

* REPORT DOCUMENTATION PAGE | 0"5";”5;’0188

PUDIC 16DCNG D08 10! TYs oL 1] bmi” 1 how per 1esp § e tme ot g €XISINg €313 SO NS, WWL’\Q anc MInaNNg Nie 032 NSO, and '~

conpeing and teviewns te cotechon ofint Send mwommmumwm aspectof hscoleeemo!nbemam no‘.:dn; suggeshons for reduang tus burden, ww:mwmﬁumzrs
Servioes, Dracicrate b riormabon Oparadons and Reports, 1215 Johocson Davis Hahway, Sute 1204, Ardngton, VA 22202-4302, and 1o the Off-ceo(ngﬂen' @ Budgel Paperwark Reduzton queq(mowxas Washngion,
NZ 2350
. "+ [AGENCYUSEONLY (Leave blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
. ‘ 01-JUL-90
N ’.._- . R.TITLE AND SUBTITLE - S FUNDING NUMBERS
. C: F19628-88-D-0028
BR24: Final Report
+|6 AUTHOR:S)
David H. Jones TA: BR-24
7. PERFORMING ORGAN.ZATION NAME(S) AND ADDRESS(ES) - 8 PERFORMING ORGANZATION
- . REPORT NUMBER
The Boeing Company
" Boeing ‘Aerospace and Electronics Division
Systems and Software Engineering D-613- 11000
P.O. Box 3899
Seatile, Washington 98124
3. SPONSORN.IM"N"I ORWG AGENTY NAME(S) AND ADDRESS(ES) - 10. SPONSORING I MONITORING
R AGENCY REPORT NUMBER
_," ESD/AVS T
7| Bldg. 17-04 _
i Room 113 T,
\ .
" |. Hanscom Air Force.Base, 01731-5000
13. SUPPLEMENTARY NOTES — — —
120 DISTRIBUTION? AVAILABILITY STATEMENT) 125 DISTRIBUTION CODE

Approved for public release - distribution unlimited. A

13. ABSTRACT (Maximism 200 words)

Several people in the STARS program working in the area of user interface technology
have indirectly contributed to the work presented here: Mark Nelson of SAIC and
Kurt Wallnau of Unisys. Bob Rosen of Boeing was the principle contributor to the
implementation scheme used in the prototype. The Boeing Commercial Airplane Group's
Avionics Flight Systems Central Software also contributed the Ada binding to Motif
that was developed by their group.

4. SUBJECT TERMS " T NUMBEROFPAGES =
Keywords: STARS user interface 44
virtual interface -user interaction tasks 16. PRICE CODE
‘ X Windows System
17, SECURITY CLASSIAZATION 18. SECURITY CLASSIACATION 19, SECURSTY CLASSIACATION 2. LWTATION OF RBSTRACT.
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified) _Unclassified Unclassified None
NSN.7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Stc 23918
296102

"~ CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 D613-11000

Name of CDRL

Prepared by /~’£> % ﬂ r—ro

David H. Jores
Chief Progrgmmer (BR24)

Reviewed by ' \(ﬁov-_\(\,e,ol___ 7 7/’(/ é(’) ’

James K, King .
System Architect

Reviewed by N N e /2 [70

Joh . Neorr
Development Manager

Approved by Lo—¥n, L\‘U‘&‘-O?Sa ,
William ‘M. Hodges
STARS Prégram Manager

Acsessioa Yer /
BTIS GRAMI &

1 BRIC Y4B []

Yanaouwneed

Juﬂtif&nltlon____,_.~—1

3y -
Distributien/
Availability Codes

e e r—t s 0t v .

Fvall and/cr
Dist Special

y—

D613-11000

2

BR24 Final Report Q\ \ !

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 v

ABSTRACT

This document reports the results of the Boeing STARS task BR24, User Mecla
Interface, (henceforth called the "STARS User Interface ‘Toolkit" or SUITE). It
includes the status of the prototype work done on BR24 and a comparison code size
based on the prototype sample application. There is a technical discussion of the
implementation of SUI'TE; recommendations for future work are identified.

KEY WORDS

user interface

virtual interface

user interaction tasks
X Windows System

BR24 Final Report
D613-11000

)

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

PREFACI:

.Several people in the STARS program working in the area of user interface technology
‘have indirectly contributed to the work presented here: Mark Nelson of SAIC and Kurt

Wallnau of Unisys. Bob Rosen of Boeing was the principle contributor to the
implementation scheme used in the prototype. The Boeing Commercial Airplane
Group’s Avionics Flight Systems Central Software (Brian Pflug and Joc Scheer)
contributed the Ada binding to Motil' that was developed by their group.

KEYWORD STRINGS

user interface

virtual interface

user interaction tasks
X Windows System

BR24 Final Report
D613-11000 4

. 7 A - ;
" CDRL-01000 The BOEING -Company .7 CDRL-01000.
. © TASK BR24_ - - :
TABLE OF CONTENTS
Section L L
SCOP e 9
Section 2
REFERENCED DOCUMENTS e e e e S et ceeeen 9
Scction 3
CUNOTES o e .9
3.7 Abbreviations an?l Acronyms S e SR ... 9
Scction 4
BR24 RIEESULTS e e e e e e e, e e 10
4.1 Description of the Prototype Sample Application PR .. 10
4.2 Status of Work . ..o e e e e 11
4.2.1 Implementation of SUITE Components 11
4.2.2 Implementation of the New APFAT -User Interface 12
4.2.3 Modifications 0 APFATt i, 17
4.2.4 Demonstration of APFAT with the New Usur Inlerfacc, ... 2
43 Comparisonof Code Size e 12
4.3.1 Metrics for APFATT, VersionSo w12
4.32 Metrics-for APFAT with SUITE Interface 15
4.3.5 Metries for SUTFLE oo o oo ... e e 17
4.4 Comparison ol Porting Iiffort e e e e e e .17

Section 5

IMPLEMENTATIONOIF SUITEE I T .17
5.1 Implementation GOalS e e e 17
5.2 Analysis of Implementation Options e e e A8 -
5.3 I)uxonplmn of Implementation R S, 21

5.3.1 The Class Iierarchy e e e e e e e 25

BR24 Final Report . ‘
DA13-11000 -5

“CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

TABLL OF CONTENTS [continued]

Section 5 IMPLEMENTATION OF SUITE [continuéd]

5.3.2 The Windowing System Interface et et 24
SAConclusions e e e .26

Section 6

RECOMMENDATIONS FOR FUTUREWORK 28
6.1 Refine Foley's Concept of "Sclection Interaction Task” 28
6.2 Expiore Alternative Implementations that use Language Extensions to Ada 28
6.3 Demonstrate Application Portability e e e 29-
6.4 Extend SUTTE 10 Application-specitic C omponents 29
6.5 Clean—up SUITE Implementation 30
6.6 Port the SUITL Implementation to the STARS X/Ada Interface 31

Appendix A

SAMPLE CODEFOR A SUITE CLASS 32
AlSpec e e e h e e e e 32
A2 Private Spec e 33
A3 Body .o e 3

A3.1 A Component Insertion Operation 38
Ad-Private Body e 41

BR24 Final Report
P613-11000 6

CDRL 01000

The BOEING Cormipniiy ‘CDRL 01000
TASK BR24 ‘
LIST OF FIGURES
I. Composition of a SUITE Component (Application Panel)- e 23
BR24 Final Report
DNG13-11000 7

CDRL 01000
TASK BR24

The BOEING Company

LIST OF TABLES

1. Comparison of Methods for Simulating Inheritance

BR24 Final Report
D615-11000

CDRL 01000

CDRL 91000 The BOEING Company CDRL 01000
TASK BR24

1. SCOPE

This document summarizes and reports on the work carried out under the Bocing
STARS task BR24, User Meta Interface (henceforth called the STARS User Interface
Toolkit (SUITL)). The contents include BR24 results, a technical discussion of the
SUTITE implementation, and recommendations for future work.

2. REFERENCED DOCUMENTS

This scction lists all documents referenced in this Final Report.

[BER89| Berard, . Creating Reusable Ada Software, EVB ‘I'raining Course, 1989
[BOO87] Bouch, G. Software Components With Ada, Benjamin—-Cummings, 1987

[{CDRLYSO| Programmer's Guide for STARS User Interfuce Toolkit (SUITE). Jan 31,
1990. Boeing STARS CDRI. # 980, Electronic Systems Division, Hanscom AlFB.

[CDRIYT0] Ada Code for Meta Level Interface, July 1, 1990. Boeing STARS CDRI.
970, Electronic Systems Division, Hanscom AFB.

[CDREYI0O] Ada Code for Prototype Sample Application, July 1, 1990. Bocing
STARS CDRI. # 990, Llectronic Systems Division, Hanscom AFB.

[Foley 84| IFoley, J.D., et. al.. "The Human Factors of Computer Graphics Interaction
Technigues®, 11:1:1: Computer Graphics and Applications 4(11):13-48, Nov. 1984.

[PERST] Perez—~Perez, K. Simulating Inheritance with Ada, Ada Letters, Sept. 1987

[WALY0] Wallnau, K. Adal/Xt Architecture: Design Report, January 1990. STARS
CDRIL #01000, Electronic Systems Division, Hanscom AFB.

3. NOTES
Thix section contains information only and is not contractually binding.

3.1 Abbreviations and Acronyms

APEAT Ada Program Ilow Analysis Tool
APl Application Programmer’s Interface
SUTITE STARS User Interface Toolkit

X X Windows System

BR24 Final Report
DAI3-11000 ’ 9

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

4. BR24 RESULTS
4.1 Description of the Prototype Sample Application

The sample application sclected for prototyping was the Ada Program Flow Analysis
Tool (APFAT), developed by Boeing in the Q phase of the current STARS contract.
APFAT was chosen to demonstrate the SUITE virtual interface because it has a
variely of static analysis features which produce information that can be displayed in a
variely of textual, semi-graphic modes; it can be run in cither baich or interactive
mode and has a moderate degree of complexity.

In preparation for prototyping, APFAT version 5 was analyzed to determine what
modifications would be necessary. In addition, the unreleased document "Software
User's Manual for the Ada Program IFlow Analysis Tool” was reviewed, which
documents an object-oriented user interface that differs from the interface of APFA'T
V5. Analysis of the two interfaces reveals that the interface described in the "Software
User's Manual” is much closer o the style ol interface supporied by SUITE, in
particular:

o It has an object = action sclection model.
e ‘T'he structure is more adapted to a user-controlled dialog.

e T'he command structure reflects a richer and more highly interactive functionality
(but a functionality as yet not implemented in APFAT V5).

As a result of this analysis, we decided (o base the user interlace on the "Soltware
User's Manual for the Ada Program Flow Analysis Tool (APFFAT)." An intial, bricl
sketch of the new user interface was written and is summarized below:

The APFAT user interface will allow the user to identily 1) particular Ada program
objects, 2) information about that object that will be eatracted from the symbol table,
and 3) display parameters. APFAT operates on objects stored in its symbol table. The
types ol objects that will be analyzed/displayed include: Identifiers, Task, Subprogram,
Package . File, Ixception, Interface, and File. The main application panel has
standard file and help menus, plus menus o sclect the Ada entities, identifier, and
altributes that should be eatracted rom the symbol table and displayed. The Ada entity
to be analyzed is selected Irom a single choice list. The Ada program objects
(identifiers) for which information is (o be extracted rom the symbol table are selected
from a mulli-choice text selection list. A multi choice list of toggle items is used to
sclect the information to be displayed about cach sclected identifier. The third
sclection list (not implemented) is a muli-choice list allowing the user o display
information on declared objects. The "apply” button causes information about the
sclected object o be extracted from the symbol table and the output to the viewport.

BR24 Final Report
DOI3-11H000 10

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24)

4.2 Status of Work

In order to demonstrate the feasibility of the concept embodied by SUTTE, a prototype
sample application was done. To support this prototype, portions of SUITE were
also implemented. Only those portions of SUITE that were expected to be directly
used by the sample application were actually implemented. As it turned out, this
represented a large percentage of the predefined SUITE components: The only
components not used by APFAT are valuators (SUITE components that permit the
user to view/enter a value within a range of values), several of the dialog panels, teat
components, viewport, and command line interface panel.

4.2.1 Implementation of SUITE Components

The implementation of SUITE is a hicrarchy of derived types and a number of
support packages. The base types, from which all other types are derived are
completely implemented, with the exception of resource management. (Resource
management implements user preferences in an implementation independent way.)

The lollowing components are implemented to a full enough extent o support the
prototype sample application: Command Items, Toggle Items, Menu Command ltems,
Command Lists, Multi-Choice Lists, Application Panels, Applications, File Selectuon
Dialogs.

The following components are NO'T implemented to a full enough eatent to support the
prototype sample application:

¢ Dialog Pancls = Not tested with Frames inserted in them.
o Frames = Cannot insert components in the frame.

e Text Selection - This component was not part of the original specilication. It is
nceded to support the scelection of Ada identifiers for which entries eaist in
APEFAT's symbol table. Sce section 6 of the present document for a more
complete discussion of the "Sclection Interaction Task™.

e Text Display - This was also a component that was not part of the original
spectlication. Its purpose is to sunport the porting of existing applications that
use TeaxtUIO by minimizing the number of code changes necessary to use SUITLL
The text display component simulates portions of the standard package Text_10).
causing output to be displayed in specific SUITIZ components.

BR24 Final Report .
DOIS-11000 Ii

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

4.2.2 Implementation of the New APFAT User Interface

About 80% of the code necessary to set up the use interface has been written and
tested. One submenu has not been generated because its component has not yet been
implemented.

‘There are two application processing routines that pass information l)c.th,c,n APFAT
and the user interface. Both routines are partially implemented.

4.2.3 Modifications to APFAT

Madilications to existing APFAT code turned out 1o be minimal: One AFPA'T routine
was modificd and one was added. The new routine, Symbol_Display processes a
representative set of information from the symbol table, but not all information. All
information could be displayed with simple additions to a “"casc” statement.

4.2.4 Demonstration of APFAT with the New User Interface

A _omplete demonstration of APFAT with its new user interlace is not possible at this
writing. The application executes and displays menus, submenus. It supports the
selection of files for parsing and the selection of the Ada entity class and the symbol
table information to be displayed. The menu for selecting identifiers is not complete;
symbol table information is not currently displayed on the screen because the text
display component is not completed. Instead output is directed to a lile. In spite of
these limitations the demonstration gives a very good feel for how APEFAT would be
used through its new user interface.

In addition, demonstration of the functionality of SUITL components is possible
through the substantial test code that was written. The following test routines may be
used for this purpose: test.a, testapplication_pancl.a, test_command_item.a,
test_command_list.a, test_core.a, test_dialog_panel.a, test_file_selection.a,
test_menu_command_item.a, test_resourced_object.,a, testselection_item.a,
lestselection list.a, testtextiselection.a, test_toggle_item.a test_widget_operations.a,
lesti_x.a ,

4.3'Comparison of Code Size

This section compares code size and {unctionality of the prototype sample application,
APEAT, with the bascline version of APFFAT, V5.

4.3.1 Metrics for APFAT, Version 5

Compilation Unit Identifier FFile Specification

BR24 Final Report
DG613-11000 12

CDRL 01000
TASK BR24

Aida_Parser
Ada_Parser
Ada_Scanner
Ada_Scanner
Adaptation_Data
Adaptation_Data
Apfat
Lexical _Analyzer
Lexical_Analyzer
Parse_Compilation_U
Report_Generator
Report_Generator
Symbol_Definitions
Symbol_Manipulations
Symbol_Manipulations
Symbol_UI
Symbol_UI
User_Interface
User_Interface

"The original APFAT code (V5) used text_io lor all input/output

The BOEING Company

ada_parser_.a
ada_parscr.a
ada_scanner_.a
ada_scanner.a
adaptation_.a
adaptation.a
aplat.a
lexical_.a
lexical.a
parse_cu.a
report_.a
report.a
symbol_del_.a
symbol_man_.a
symbol_man.a
symbol_ui_.a
symbol_ui.a
user_interlface_.a
user_interface.a

and had a command line style interface. ‘The size of the
source code modules were as follows:

File: //node_17113/local_user/r24/ APFA'T/adaptation_.a

17 statements 106 lines

File: //node_17113/local_user/r24/ APFA'l'/repori_.a

9 statements 99 lines

File: //node_17113/1ocal_user/r24/APF Al /lexical_.a

12 statements 102 lines

File: //mode_17113/local_user/r24/APFA’T/ada_scanner_.a

14 statements 151 lines

File: //mode_17113/1ocal_user/r24/ APFA'T/symbol_dcl_.a

94 statements 256 lines

File: //node_17113/1ocal _user/r24/ APFA'T/symbol_man_.a

15 statements 109 lines

File: //node_17113/1ocal usur/r"4//\l’l A'T/symbol_ui_

15 statements 134 lines

BR24 Final Report
D613-11000

CDRL-01000-

CDRL 01000 The BOEING Company
TASK BR24

File: //node_17113/1ocal_user/r24/ APFA'T ada_parser_.a
2 statements 65 lines

File: //mode_17113/1ocal_user/r24/ APEF AT user_ mlcrlau, .a
8 statements 81 lines

File: //node_17113/1ocal_user/r24/ APEFA'T/aplat_vdp_.a
I statements 204 lines

File: //node_17113/1ocal_user/r24/ APFA'l'/adaptation.a
29 statements 194 lines

File: //node_17113/local_uscr/r24/ APFAT/report.a
57 statements 230 lines

File: //node_17113/1ocal_user/r24/ APIFA'l lexical.a
186 statements 669 lines

File: //node_17113/1ocal_ usur/r’74//\i’l A’l'/ada_scanner.a
79 statements 439 lines

File: //node_17113/1ocal_user/r24/ APK Al/syml)ol_,man a
442 statements 1393 lines

File: //node_17113/1ocal_user/r24/ APFAT/symbol_ui.a
516 statements 1175 lines

File: //node_17113/ocal_user/r24/ APFFA'T/ada_parser.a
74 statements 282 lines

File: //node_17113/1ocal_user/r24/ APFA'T/ uéer_jnlerface.a
110 statements 285 lines

File: //node_17113/1ocal_user/r24/ APF AT/ parse_cu.a
321 statzments 686 lines

File: //mode_17113/1ocal_user/r24/ APIA'T/aplat.a
10 statements 90 lines

Totals:
2009 statements 6750 lines

Exccutable (Apollo DN3500 (68020, 68881), SR10.1, DomainAda 3.0):

333455 bytes

BR24 I'inal Report
PG613-11000

CDRL 01000

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 -

The user interface portion of APFA'T VS is actually in scveral packages, but only the
following packages were modified in the adaptation for SUI'T]::

e user_intertace.a (file deleted; replaced by suite_ui.a)
e ada parser.a (Tex(_i0 calls eliminated)
4.3.2 Metrics for APFAT with SUITE Interface

As mentioned above, only two of the original APFA'T packages were modified or
removed. The following packages were added to adapt APFA'l to SUTI'TT:

o suite_ui — creates the SUITE user interface for APFAT

e symbol_display - parameterized output routines that extract information in the
APEA’T symbol table and format it for output as ASCII text.

e parse_file, select_symbol_info — ‘These routines do application processing as a
result of user actipns such as selection. In general these routines respond 1o user
input that requires application processing.

‘The user interface portion of APFAT interfaces to the original code of APFAT
through only three routines:

o Ada_Parser.Parse_Ada_Source_Files - Takes Ada source file name and parses
syntactically correct Ada, building from it a symbol table.

o Symbol_Display.Display_Identifier - Produces a formatted ASCII text of
symbol table information for the specified Ada identifier and Ada entity. The
kinds of symbol table information that can be displayed include : Declares,
Invoked_By, Calls, Arguments, Handler, Raises, References, Raised_In, Body,
Used, Visible, With_Unit.

e Symbol_Display.Display_Identifiers_By_Class — Produces a list of identifiers for
the given class of Ada entitics. ‘This information is used (o construct
TextSclection components that display Ada identifiers.

The following table summarizes the metrics associated with all new or modilied
packages (Numbers represent the Ada statement count):

Package File V5 Deleted New
user_interface user_interface.a 118 118 0
ada_parscer ada_parscr.a 74 10 5
symbol_display symbol_display.a 0 0 137

BR24 Final Report
D613-11000 ' 15

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

suite_ui suite_ui.a 0 0 " 151
parse_file parse_file.a 0 0 41
selectsymbol_info select_symbol_info.a (0 . 37

TOTALS: 192 128 371

Fxecutable (Apollo DN3500 (68020, 68881), SR10.1, DomainAda 3.0):
1762937 bytes

Notes: Count in number of statements. Counts refer to combined count of statements
in specification and body. New statement count includes both new and modified
statements. ‘The package "symbol_display” represents new functionality that APFA’L
V5 did not have. At the time of this writing the SUTTL user -interface to APFAT was
not completed; we expect the flinal count to be between 250 and 300 statements. As
can be seen by a comparison of the size ol executable image, the use of SUI'TIE and
other underlying user interface libraries increase the size by a factor of about 5. The
major contributor to the size increase is the size of the underlying user interface
libraries, in this case Motif and X Windows.

The version of APFA'T that uses SUITE is a significantly richer user interface and is
much easier to use. We also consider it very significant that the SUITL version of
APFAT permits modification and adaptation of the user interface via "User
Preferences.” APFA'T V5 has no similar capabilities. Given these facts, we consider it
impressive that, from the application programmer’s point of view, the increase in the
number of statements is only about 250, or about 12% ol the total number of
statements in APFFAT.

However, the statement count by itself’ somewhat undercstimates the effort required by
the application programmer to use the SUITI interface. The Ada statements used to
sct-up and run the SUITE interface are somewhat longer and more complicated than
would be required of only Text_IO were used.

In cvaluating the use of SUITLE, several other comparisons would have been
interesting, but time did not permit them being made:

a. Compare the number ol additional statements that would be required to use
another user interface toolkit such as Xt/Athena, Motl, or Presentation
Manager.

b. Compare the number of language statement required W0 use a
dialog/presentation language such as Motl/UIL or Serpent/SILANG.

‘Therelore, our preliminary conclusion regarding source code size are that the use of a
high level user interface toolkit such as SUTTLE represents only a 10-20% increasce in

BR24 I“inal Report
DG613-11000 16

CDRL 01000 The BOEING Company CDRL-01000:
TASK BR24 ‘

code size over a user inierface that is written using TextUIO. ‘The significant
advantages of using an higher level toolkit such as SUITE are: User controlled dialog,
visual interface, keyboard/mouse equivalence, consistency across device classes, and.
the ability to customize the user interface through user preferences. (Ifor a fuller
discussion of these concepts, please refer to CDRL 980, "Programmer’s Guide for

SUTTI:".
4.3.3 Metrics for SUITE

SUITIL: is comprised of about 57 packages totaling to about 14,800 lines of code and
3100 Ada statements. In addition, test code represents about 5000 lines of code or
1700 Ada statements.

SUITL is built on an Ada binding to Mofif, which in turn depends on the “C"
implementations ol Motif” and Xlib.

4.4 Comparison of Porting Effort

After some evaluation and discussion with developers, it was decide that a comparison
of developer effort in porting applications would not be meaningful. A wide varicty of
circumstances effect the amount of effort necessary to port software, and in our
circumstances it was not possible o hold any of these variables constant. Among the
variables eflecting porting cffort are: Stability of the underlying user interface
software, complexity ol the user interface concepts implemented by the interface, and
experience of the programmer.

To develop (design and implement) the new user interface to APFA'T, about 1-2
weeks of effort were required. This time could have been reduced substantially il the
SUITE implementation had been complete and stable betore work began. ‘There are
no available figures for the development of the user interface for APFA'I, Version 5,
but it was certainly a very short time, since the command line interface style of the
interface is extremely simple.

5. IMPLEMENTATION OF SUITE
5.1 Implementation Goals

The Boeing implementation ol SUITE was intended as a prototype and only a sample
of the possible set of implementations. Since X windows is the most important user
interface in the marketplace today, it would be logical for an initial implementation to
be on top of X windows.

A key aim of the SUITE implementation was 1o use an object-oriented methodology.
‘This included the ideals ol encapsulation (all data and operations on a given object in
a single place), implementation hiding (unnecessary details hidden from the application

BR24 Final Report)
DAI3-11000 17

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

programmer), and inheritance (operations and attributes of more general classes
(superclasses) ol objects being available to more specific subclasses). Furthermore
there was a explicit effort made to use features of the Ada language, rather that
language extensions or an external library providing gencral purpose capabilities
needed o build components.

Portability is very important to the concept of SUITE. Major goals were to minimize
dependencices on the windowing system in the application programmer’s interface and,
to a lesser eatent, on the compilation system in either the application programmer’s
interface or its implementation.

Another goal of SUITE was extensibility, i.e. the ability for others to define new user
interface components lor the SUTTE object set. The fact that geometric objects (boxes,
ovals, ete.) were not included in the current version of SUI'TT: makes this particularly
important.

5.2 Analysis of Implementation Options

While Ada supports encapsulation and information hiding, it does not provide any
direet support for inheritance. Nevertheless, since the requirements analysis was done
on object-oriented lines, it was decided to implement as close as possible to them. The
most critical implementation option was thus what metl:od to use for approximating
inheritance in Ada.

Sia mcthods for simulating inheritance in Ada were considercd. A comparative
analysis of them is shown in tabie 1. The six methods are:

1. Unisys'. The method used by Unisys for STARS task UR20, using subtypes
and derived types to simulate inheritance, with two packages tor each object.
Refer 1o |WAL90|, or to the next section.

2. Unisys' with derived typing. Similar to (1), but uses derived types and derived
operations at points where Unisys uses subtypes. Refer to the next section.
3. Perez’. A method developed by Liduardo Pere. Verer. which also uses derived

types but only one package for each object. Refer w 10187,

4. Perez’ w/ subtyping and renaming. Similar to (3), hut uscs subtyping instead of
derived typing and renaming instead of implicitly derived operations.

5. Hide hierarchy. Repeating every operation on a superclass in the specifications
of its subclasses.

BR24 [Final Report
DG6I3-11000 18

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6. Global data structure. All altributes for all-objects included in a. single data
structure.

‘Three criteria are given in the comparison: N
1. Inheritability from Object Programmer Viewp«nt. Does the person coding a
SUITLS object have to undertake any special avi.c s~ 0 simulate inheritance?

2. Inheritability from Application Prograrmyne: V.wp .. Does the application
programmer have 1o undertake any special a.t'c '« « simulate inheritance?

3. Integrity. lHow easily and how badly can c¢ata be corrupted or otherwise
misused in this method?

As shown in the table, ali six of the methods make traceofls. Of these methods, it was
decided 1o go with the Unisys method modilied to usc only derived types (method 2).
This achieved a greater distinction between classes and protection against their misuse
compared to method (1), at the cost of a greater amount of inconvenience for the
application programmer, as discussed in the lollowing section. It achieved a closer
simulation of inheritance than the other four methods. ‘The most important reason for

eliminating the subtypes was that Unisys was implementing, an fntrinsic layer ~- a set
of operations shared by all objects —— while our set of operations was different for

cach object in order to produce a better “lit" between objects and operations. -in
Unisys' case, making everything a subtype produced type equivalence, after which it
would only be necessary to make the Intrinsic package visible to be able to call any
operation. On the other hand, without a shared sct of operations the only way to make
a superclass operation implicitly available to a subclass was through derived
operations, which are generated by type Jfeiivation.

An additional method for implementing inheritance in Ada, Classic-Ada, is discussed
in section 6.2.

Another major implementation question was the choice ol toolkit 1o use to interface
SUITE to X windows. Here the choice was quite limited because few bindings from
Ada to X windows libraries were available. The STARS Ada implementation of the
Xt Intrinsics by Unisys and SAIC were not available soon enough. A set of Ada
bindings to the OSF/Motil toolkit was available Tor in-house use only from Boeing
Commercial Airplanes. Due to availability considerations the Ada bindings to Motif
were used.

While STARS software is public domain, the contractors were free o use proprietary
or in-house software in-their implementatioss, so that the Motil’ bindings could be used
cven though they would not be available o uscrs of SUITE. Since the SUITIL
implementation was considered a sample and prototype, it was nol criticas wat it
maximize its usability by relying only on public domain software.

31224 IFinal Report
DG13-11000 19

CDRL 01000
TASK BR24

The BOEING Company

CDRL 01000

TABLIE 1T Comparison of Methods lor Simulating Inheritance

Method Inheritability Inheritability "Integrity
from object from application
programmer programmer
viewpoint view point
Unisys’ Full Full No protection agains:

violations of class hizrarchy
—-— consequences could be
disastrous

Urisys' (w/
| derived tvping
instead of

Must explicitly
provide operations
that arc not

Some checked type

conversions
necessary

Allows violw:sons of class
hicrarchy it .-hecked type
conversions are done

| subtyping) implicitly derived
Perez’ Must explicitly Must explicitly Full
i provide operations | convert ebjects 1o
that are not superclass type(s)
implicitly derived or use link
operation to link
instances of class &
superclasscs
Perez’ w/ Must explicitly Mu... use link IFull

subtyping &
| renaming

-

convert objects o
superclass type(s);
must provide
renaming clauses
for all inherited

! operations &

aitributes

opcration Lo link

instances of class &

-superclasses when
updating objects

Hide hierarchy

Must provide
subprogram bodics
for all operations

Fuli

BR24 Final Report
D613-11000

Many subprogram calls
requires pragma INLINIL

for clliciency

20)

‘CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 '

TABLI 1 Comparison of Methods for Simulating Inheritance [continued]

Method Inheritability Inheritability "Integrity

from object from application

programmer programmer

viewpoint viewpoint
Global data Full Full No protection against
strticture violations of class hierarchy.

(although data is not
destroyed); must recompile
entire system if any attribute
is added/changed;
meaningless data is visible to
operations (stamp coupling)

B R [P - - - — e ———_ e — e g A o b—— - RN s o Cmran et ——————

5.3 Description of Implementation
" 5.3.1 The Class Hierarchy

As already mentioned, SUITE attempts to simulate inheritance by a method similar to
the one adopted by Unisys in task UR20. This method involves two sets of packages
for each object. ’

‘The first package is the "public” spec; this is the interface intended for use by the
application programmer. Each class in the public spee is represented by a derived
type, which in Ada allows it to inherit the operations delined lor its parent lype,
including the operations that the parent itself inherited. (Alas, constants and
excentions defined for the class are not inherited, nor are operations in which an object
of the parent lype is not a parameter, although there were only a few of the latter).

‘The second package is the “private” spec. This includes information that other SUITL
classes noed but the application programmer does not. Since other classes (packages)
must use the data, it cannot be hidden in the body ol the public package. The primary
information in this package is the record used to contain the attribute data for the
class. As shown in figure 1, cach class record is divided into two parts, an "inherited”
part and an "added” part. The inherited part is the superclass’ data ficlds, so that cach
class has all of the attributes of its superclasses. ‘The added part contains the
information pertinent only for the new class and its subclasses.” “To get an attribute of

*In BR22, SAIC's class record repeats the attributes ol its superclass rather
than encapsulating them as an "inherited part”. This permits casier access ©
the superclass attributes at the price of redundancy. .

BR24 Final Report)
N613-11000 21

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

some distant superclass, one travels through the “inherited” parts up the superclass tree
until the proper "added part” becomes accessible. Unfortunately, the statements that
traverse up the inheritance tree do not indicate which class contains the accessed
attribute, since the access appears as: :

<object>.Inherited_Part.Inherited_Part...Inherited_Part. Added_Part

The top of the class hicrarchy, the class that is the superclass of all other classes, is
called Core. For the Core class only, the data type in the public spec is a pointer o
the data type in the private spec (the Core data record). Since all other public spec
types are derived from the public Core_T'ype, that means that all of the public types
are also pointers to the Core data. In order to access the data for their own classes,
an unchecked conversion must be performed which converts from a pointer at one
object (the Core record) to a pointer at another object (the class’ own data record).

‘The mapping of class data into memory is strictly controlled. The inherited part is
always placed in memory before the added part. ‘The inherited part may, in turn, have
its own inherited and added parts, which must also obey this rule. ‘This structure
continues up to the innermost class (Core) which as a result is always is placed at the
very top of a class’ data structure. If the added part contains components, then those
components will have their own inherited and added parts; care must be taken to avoid
confusing between the core part of an object and the core parts of its components.

The purpose of the strict control over the data structure is to ensure that inheritance
will work. An operation on a class takes an object of a "public” data type, which as
already mentioned is cither Core or a derivation of it. If the attribute referenced is
part of Core, access to the private type is simple. If it is in some subclass, then
unchecked type conversions must be performed to convert the pointer to the private
Corc into a pointer to the private version of whatever class contains the attribute.
Without the strict control, there would be no guarantee that the proper data would be
accessible after the type conversion. Take ligure 1 as an example. An Application
Pancl is derived from a Resourced Object, which in turn is derived from Core. An
operation on an Application Panel initially receives a pointer to Core and converts it
—— unchecked —=- into a pointer 0 Application Panel: from the point of view ol a
pointer to a Core object, the attributes of an Application Panel are noneaistent; after
the conversion, the Application Panel ficlds are made visible. But only through the
strict control is it assured that the application panel ficlds are actually represented in

memory by application panel data; otherwise a compiler could rearrange the Core and:

Application Panel ficlds in memory and create havoc. Without the representation
specifications, the code would be considered erroncous by Ada's standards.

BR24 Final Report
D613~11000 22

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 _

[e ey

Core
Inherited
Part

Resources

System Mend

Button
Added :
Por\t ﬂCtiOﬂ
Ber

Workspece

Figure 1 Composition of a SUITE Component (Application Panel)

The mapping of inheritance to Ada has some limitations. In particular, there are a
number of operations in which one object of class X is inserted to or retrieved from
another object of class Y. All of these operations are defined in the package
corresponding 10 Y. Now suppose we have subclasses for X and Y, called X’ and Y,
respectively and an operation f(X, Y), which as mentioned above will be placed in Y's
package. Ada’s type derivation mechanism will create a derived operation f(X, Y').
nol f(X', Y') which is what we rcally need. Placing the operation in X's package will
not help, because then the derivation produces the operation f(X', Y), which is also
wrong. In this case, the application programmer must perform an explicit (checked)
type conversion. FFor example, consider the classes frem and List and the operation

Add (An_Htem: in Item; , To_List: in out List);

that is defined in List's package. I we have a subclass for Item called Burton and a
subclass tor list called Menu, then we will need an operation

Add (An_ltem: in Button: To_List: in out Menu);
but the derived operation will actually have the parameter profile
Add (An_ltem: in Item; To_List: in oul Menu);

To invoke the derived operation, the programmer must convert his button [rom type

BR24 [inal Report
PD613-11000

£
I

CDRL 01000 The BOEING Company CDRL 01006
TASK BR24

Button to type Item, using a single checked type conversion.

All components and some attributes of each object are defined internally as part of the
object. Other attributes, however, are defined as resources. A resource, unlike an
internally-defined attribute, can be set by the user with a file by stating the name of the
object (or its class to affect all objects in the class), the resource name, and the desired
value. In genceral, resources affect only the view of an object and not its behavior.
The decision of which attributes should be resources and which should not were a
matter of balancing user tailorability against the ability of SUITE to control the
attribute to ensure proper behavior.

‘The application programmer can modily and query internally-defined attributes with
operations defined in the package of the class containing the attribute. The operations
on resources, on the other hand, are delined by a single class (package),
Resourced_Object. It provides a common sct ol operations over all resources using a
set of generics that other SUITE objects instantiate to define what resources they will
provide. ‘Therefore, while the application programmer nceds to refer to the
Resourced_Object package to know the sct ol available operations and their parameter
profiles, he would not actually be using it directly (except for the resources defined for
all classes) but rather the generic instantiations in the other SUITIE objects.

The Aca code for a sample SUITE object is shown in appendix A.

5.3.2 The Windowing System Interface

The sample SUITE implementation is on top of X windows, and specilically the X
olkit intrinsics (Xt). the OSF/Motl widget sct, and the Boeing Commercial
Airplanc’s Ada binding to Motit'.

In several respects, Xt was inimical to our object-oriented design and to
object-orientedness in Ada.

We Tollowed the philosophy advocated by Grady Booch [BOOS7] and Iid Berard
[BIERSY] that objects be ignorant of the context in which they are used; for example,
an object would have no knowledge of whether it would be placed in a set, tree, table,
cle. and would not reference any of those complea data structures. Xt, however, forces
conteatual knowledge on its users. This is due o the “parent” parameter required when
creating an Xt object (widget), which specifies what object the new widget is o be
inserted into (its "parent”). Furthermore, widgets must be created in a top-down order
in Xt i.c. a parent widgel must be created before any child widgets can be created.
SUTTTE: has no such restriction on the order of creation of its objects. Furthermore, the
mapping ol some SUITE objects o Motil' widgets was conteat-dependent, i.c.
depended on what type ol object they were placed into. FFor example, a SUTITI
sclection list could be implemented as a Moti’ menu bar (if placed in an action bar), a

BR24 Final Report
D613-11000 24

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

pulldown menu (if attached to a single menu choice within an action bar), or a popup
menu (il attached to the background). If this contextual information was hard-coded
into ‘the parents, then extensibility would be reduced. Resolving our methodology with
XUs in order to successfully create widgets proved o be one of the most difficult, it not
the most difficult, issue during implementation. After considering a number of
methods which failed or were foreseen to fail, we adopted a method in which each
class would have its own widget creation procedure. Il the parent widget were already
created, this procedure would be invoked immediately. Otherwise, it would be invoked
later, when the object was inserted into a given parent. This method involves
procedure variables, another feature not readily available in Ada. Umsys” UR20)
report discusses a complicated method of providing procedure variables, which time
did not permit us to implement. Therefore, we adopted a temporary restriction that all
objects could only Lo inserted in a top—down order, i.¢. no object could be inserted into
a sccond object that was not itself inserted into something else (except for objects of
the topmost class of the parenting hicrarchy, Application.) An intermediate-term
solution would be to hard-code the entire widget creation mechanism within the
application, which would allow objects to be inserted in any order but would reduce
extensibility.

Xt allows an application to respond to user action (e.g. selecting a push button by
pressing it) by invoking a given procedure cach time the user performs a given action.
These procedures are referred 0 as callbacks. “The Xt programmer can specify the
-allback procedure corresponding to cach object that the user can select. However,
this is another case requiring procedure variables. I the callback is parameterless, it
can be passed os a variable by its address. If it has parameters, some additional
mcans are necessary o provide actual values for those parameters. This is an even
more complicated procedure variable problem than the one needed to create a widget,
since the widget creation procedures would all have the same number and type of
paramcters while callback procedures could have any number of parameters of any
type. Unisys does present an even more complicated method of simulating procedure
variables for this case, which involves no less than passing around the entire calling
environment. Rather than use up the entire project time to implement it, we adopted a
method using a set of generic packages with subprogram parameters, which could
accommodate callbacks with up to three parameters. (IF the application programmer
had a callback with more than three parameters, he would have to bundle some of
them into a record and unbundle them when his callback was invoked.)

The callback procedures were another case in which the class hicrarchy partially
Failed. since procedures in nested generic packages are not derivable in Ada. When
scelting a callback procedure Tor a subclass object. a type conversion again was
necessany. Aad il one of the parameters to the callback procedure was also a generic
paramuter. then even type conversion would be insufficient, as shown in the following
example:

type Basce is ...

BR24 Final Report
Do 13- 11000

(]
th

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

type Derivation is new Base;
13: Base;
D: Derivation;
generic

type ‘I is limited private;

with procedure Callback (Using: in T);
package Opcrations is
procedure Do_It (To: in 'T);

Suppose you want to call Do_It on both B and D. You must instantiate
Operations twice, once for cach type, even though one is a derivation of the other.
‘This is caused by the LLRM 6.4.1, which states that it a type conversion is used as
the actual parameter for Do_lt, then the “type mark” of the conversion must match
the type mark of the vormal parameter, i.e. the conversion must be from
Derivation to ‘I, which would be illegal because I is a generic type.

Some other Xt idiosyncrasies created problems to try to hide their effects from the
application programmer. One was that no commands to display or undisplay
windows would take elfect on the screen until "buffer flushing” was done, by calling
cither Xt_Pending or XtUNexUlivent. In most cases, the bufler flushing could be
hidden away from the application programmer during displaying or undisplaying
commands, but there still may be some circumstances where the application
programmer would have 10 do a "flush” himself. {We accomplished the hiding at
the very end of the project and have not determined if we covered all cases.)

5.4 Conclusions

‘The application programmer’s interface (API) for SUITE appears to have
succeeded in its goal of hiding the underlying windowing system (X windows) in its
application programmer’s interface (public specs). While some Xt concepts have
been retained in the AP (c.g. resources), steps have been taken to allow such
concepts o be ported o other windowing systems. (With resources, a complete
interface has been designed for resource management that hides the Xt resource
manager [rom the application programmer.)

We have also been suceessful in maximizing eatensibility, at least in concept. It is
possible that shorter-term implementations would have some hard-coding that
would hinder extensibility.

SUITT was less successful in minimizing dependencies on the Ada compilation
system. The use ol representation spees is not a problem —- they actually enhance
portability, for the reasons given in section 5.3.1. The main culprit was tlic liberal
use of System.Address and the "Address attribute in implementing procedure
variables. This would produce big headaches in trying to port SUI'TE to the VAX

BRZ~ I“inal Report
D61I3~-11000 26

"‘CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

Ada compiler, which does not support these constructs.

SUITE has been partially suce ful in implementing a class hierarchy, using
derived operations. We were una 3 to include attributes or exceptions in the class
hicrarchy, and the previous section described several cases in which the application
programmer would have to perform checked type conversion. However, we do not
know of any method without the use of additional tools (see section 6.2) that would
more closely simalate inheritance in Ada withou! permitting the class hierarchy to
be violated more casily.

BR24 Iinal Report :
D6I3-11000 27

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6. RECOMMENDATIONS FOR FUTURE WORK
6.1 Refine Foley's Concept of "Selection Interaction Task"”

One of the more difficult and reoceurring problems of this task was to arrive at a
satisfactory abstraction for Foley's concept of selection interaction task [Foley 84,
[CDRILIY8O]. ‘This concept guided the definition of the following suite components:
Selection item, selection list, command item, command list, toggle item, menu
command item, multi- and single—choice lists, and text se€lection. This part of the
SUITE class hierarchy was very unstable, possibly reflecting the fact that the
correct abstraction was not being used.

LLate in the task we realized that there might be a substantial difference between the
selection of "actions” as opposed to the selection of "objects.” Components adapted
to "action” selection include command item, command list, toggle items, and single
and multi-choice lists. Components adapted to "object” selection include text
selection, .

Additional analysis of the subject might lead to a redefinition of classes and
operations adapted to each type ol sclection. A subsequent re—organization of the
SUITI class hierarchy would then be required.

6.2 Explore Alternative Implementations that use Language Extensions to Ada

Classic-Ada, from Software Productivity Solutions (SPS), is an Ada preprocessor
intended to fully implement a class hierarchy according to the precepts of
object—orientedness, including full inheritance.

The use of Classic-Ada somewhat conflicted with our goal of not using language
extensions. However, later in the task, when implementation ditficultics were
apparent, we decided that it was appropriate to re—evaluate the potential benefits
ol using language extensions. We received a temporary.evaluation copy of it near
the end of the R24 schedule. While time has not permitted a sufficient
re—implementation of SUI'TE to completely compare it to our Ada implementation,
we have done umug,h to indicate that Classic-=Ada might be enormously beneficial.
fts greatest impact in SUITL was lor those classes that heavily used operations 1o
insert SUITE Ol)jLLl\ into other SUITE objects, which required a large amount of
unchecked conversions in the standard Ada implementation but only a single line of
Classic-Ada code. One such class, Application Panel, required only one-sixth as
much code in Classic=Ada as conventional Ada.

A critical question in the ability o implement SUTTT in Classic-Ada is callback
procedures (procedure variables). SPS claimed that these could be implemented

BR24 Final Report
D613-11000 28

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 '

by making the callback procedure itself an object; we did not get the ()ppurlumly 10
put this claim to the test.

The suggested work in this area would be to:

1. further implement the Classic-Ada version of SUITE cnough at least to
produce some graphic output, which at this point mainly requires calls to
create Motif widgets.

2. attempt to implement callback procedures in Classic-Ada.
6.3 Demonstrate Application Portability

We would prefer to demonstrate, rather than (o just assert, that SUITE enhances
the portability of applications across a variety of underlying uscr interface software
and classes ol display devices. Currently our assertion of application portability is
based only on the abstract nature of the SUITE user interface concepls and the
corresponding application programmer’s interface. A working protolype would
certainly be convinging everyone involved, including ourselves! A very convincing
demonstration could be made by porting SUITE to a character—oriented display
device, such as an ANSI terminal. [t is our belief that the SUITE interface could
be adapted to such a device without significant violence being done to the original
concepl. Such a demonstration would have to be evaluated against the current
goals and objectives of the STARS program, which would appear to give less
emphasis o application portability across a very wide range of classes of display
device and uscr interlace technology.

6.4 Extend SUITE to Application—specific Components

In the mission statement for BR24 [CDRL 980] it was stated: "SUI'TE is intended
to support a variety of applications in the domain of systems and software
engineering. ‘The current scope of SUITE is limited to user interface (UI)
components that are useful across the entire range ol these applications.
Components ihiat are application-domain specific are beyond scope, but could be
considered at a later date, as consistent practice evolves in the ficld and when
additional resources and expertise are available.”

There is a need for a wide variety of user interface components o support
applications development in the soltware engineering domain: Graph components
like arc and nodes with subclasses implementing the semantics of diflerent types ol
graphs; presentation graphics components for representing tabular data, such as
plots, charts, and tables.

BR24 Final Report '
D613-11000 ' 29

- CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6.5 Clean—up SUITE Implementation

The SUITE implementation would benefit from a review and consolidation of code.
The following paragraphs refer to detailed modilications to the SUITE
implementation that would improve robustness, increase consistency, or simplify
usage. The full understanding of this list requires familiarity with the Ada
implementation of SUITL.

Add In_Enabled_State as a paramceter to Sclection_ltem.Create; Alternatively,
specify that all newly created object are by default in the enabled state.

Iivaluate whether it would be beneficial to implement menus using SPC menus.

The operation "set_callback..” in menu_command_item subclass must be redefined

to take a sclection list (specifically) as an argument. ‘The new body would then

build a menu tree from scratch.

Change Default_Value in package ID to Nul and add an exception ID_Is_Nul.

Fach private spec should have a Create_Widget (Resourced_Object Type
. - . . - g .

procedure which will be invoked using a system-independent procedure variable

scheme in the long run and by hard-coding into the global widget creation

procedure in the short run.

Destroy the old widget each time you add an object to another.

Replace use of "Object” in operations with more definitive terms.

Add z note that all objects are initially in uncreated state.

Fiach call 1o set a resource value will have to produce a call o Xt_Realize_Widget
due o the behavior of Xt

Add an operation in sefection list 1o add an object 1o the end of the list?
“Un—-comment out the record representation clauses == at the last minute!

Replace calls of Set The_Clas. Ol (and SeCThe_ID_O1?) in Create with dircet
record relerences.

Modily Application_Pancl.Destroy {and others?) to only delete a widget il it is not
Null_Widget.

In Menu_Command_ltem, remove the conversions to Resourced_Object.

nsure that all classes are onc linked word, with ¢ capital as the first letter only.

BR24 [Final Report
DG613-11000 30

CDRL 01000 The BOEING Company ‘CDRL 01000
TASK BR24

Create Interactor and Panel subclasses. ‘The Interactor subclass will have no
children.

Rename package Widget_List to Resourced_Object_List.

Have a cleaner way of stopping Xt. Sce p. 36 of Xt Intrinsics Manual; should call
XtDestroy application context and unix exit. This code should probably be put in
Application.Destroy.

Inserting items into- a list doesn’t give the expected order. ‘This is because the
default insert procedure for composite widgets is o insert them a the head of the
list. The behavior of the widget should be modified by replacing the Motf insert
callback with one that inscrts according to -position.

Parameters that are D or Class need only be of type String, not A_Swring, since a
String parameter accepls strings of any length. (The SUITL bodies can do the
conversion.) ‘

Some classes of objects (c.g. selection lists) can validly either exist independently
(for selection lists, as a popup menu) or as a component of another object (for
selection lists, as a component of a dialog). In the first case, the object would be a
secondary panel; in the sccond case, it would not. Whether it is a secondary
panel or not would not be known until the object was inserted into something else,
which means that il Secondary Panel is a class, its class would not be known at
creation time. Therefore, "Secondary Panel” (independent displayability) should
probably really be an attribute rather than a class.

Is_Empty should probably be removed from Selection_List, since Nul and
The_Size_Of handle it.

Routines to get/set resources of different types could be rewritten as generics.
(Widget_Resources, Boolean_Resources and others).

Increase length of Class and D types to 50.
6.6 Port the SUITE Implementation to the STARS X/Ada Interface
Due to availability, SUITI: was not developed on top of the STARS X/Ada

interface. This would be a natural and desirable transition when a compleie
STARS X/Ada Toolkit (Intrinsics and Widget Sct) become available.,

BR24 Final Report.
D613-11000 31

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

A. SAMPLL CODE IF'OR A SUITE CLLASS
A.l Spec

with Component;
with ID;
package Sample is

type Sample_Type is new Component.Component.Type;
—- ‘This:particular object is defined as a subclass of. Component class.

procedure Create
(A_Sample: out Sample_Type; .
With_ID: in ID.ID_Type = 1D.Default_Value;
Activated: in Boolcan ;= "Truc);
——| Exgeptions_Raiscd>
——| Ou_O1r_Memory
—=|| Exceptions_Raised>

procedure Dcxlroy
(The_Sample: in-out Sample lyp»)
——|. Exceptions_Raised>
~=| ObjectDestroyed
——|| Exceptions_Raised>

—— Opcrations on the sample class’ "activity” state
procedure Activate
(‘The_Sample: in-out Sample_Type);
-~=| Exceptions_Raised>
-=| ObjectDestroyed
—=|| Exceptions_Raised>

procedure Deactivate
(The_Sample: in out Sample_Type);
—=| Lixeeptions_Raised>
-=| ObjectDestroyed
—=|| Exceptions_Raised>

function Is_Activated
(The Sdmplu Sample_Type) return Boolcan;
—=|-Exceptions_ Raised>
-=| ObjectDestroyed
—=|| Lxceptions_Raised>

BR24 I“inal Report :
D613-11000 ' 32

CDRL ‘01600 " The BOEING Company 7 CDRL 01000 .

“TASK-BR24

—— Operations to-add/change/retrieve a component that is sested
-~ inside the sample object.
procedure Set_The_Inner_Window_Of
(The_Sample: in out Sample_Type;
‘To: in Component.Component_1ype);
-~ Any object that is a subclass of Component can be an inner window,
-~ according to this definition.

function The_Inner_Window_Of
(The_Sample: Sample_Type) return Component.Componentlype;

Object_Not_Created: exception;
Oul_Of_Memory: exception;

end- Sample;

‘The Sample class defined in- this package is a subclass of the Component class.
The type derivation statement will derive all operations in the Component package
on ComponentUType types, as well as those that are inherited by Component_Type
types. (Actually, there are no operations defined in the Component package, but it
docs inherit operations from the Core and Resourced_Object packages. Most
SUITL: operations come in sets: one or more operations to change a specific
state/property (constructors) together with an operation o query the current state
value (selector). In this case, there is an "activation” state with two constructors
for it (Activate and Deactivate) together with one Selector (Is_Activated). There is
a pair ol operations to change the sample object’s inner window. ‘The "inner
window” property is itself a SUITIZ component, the "activation” properly is not
another component but rather an artribute. In the SUI'TE terminology, Iixistence
is itsell’ a state, which is changed by Create and Destroy. (In-this case, there is no
query operation.) SUITE objects are all derived from an access type
(Core_Type), so all objects are initially in a Destroyed state, that is null. (It may
be curious to think of an object to be destroyed before it has ever been created, but
from the point of view of the SUITE programmer, there is really no difference
o any operation except Create raises the exception Object_Not_Created. Note
that a object passed to Destroy can later be re=Created.

A.2 Private Spec

with Class;

with Component;

with Resourced_Object_Private;

package Sample_Private is

type Added_Information_Type is record

BR24 Jinal Report
D613-11000 ' 3

.
L)

CDRL 01009 The BOEING Company CDRL. 01000
TASK BR24 .

Active: Boolean;)
Its_Inner_Window: Component.Component_Type;
end record; .
—— "The type of a component here is-its PUBLIC type.
Added_Information_Default_Value: constant Added_Information_T'ype
:= (Active => [rue, '
Its_Inner_Window => null

);

type Sample_Record_Type is record
Inherited_Part: Resourced_Object_Private.Resourced_Object_Record_Type;
Added_Part: Added_Information_Type;

end record;

~-"T'his rep clause is to enloree the order of the record components.
Added_Information_Size: constant := 48;
for Sample_Record_Type use record
Inherited_Part at O range
0..Resourced_Qbject_Private.Resourced_Object_Type_Size-1;
Added_Part at Resourced_Object_Private.Resourced_Object_Type_Size
range 0..Added_Information_Size~1;
end record;

Default_Value: constant Samplc_Record_T'ype
:= (Inherited_Part => Resourced_Objcct_Private.Default_Value,
Added_Part => Added_Information_Defaull_Value);

Sample_Record_Size: constant := 24104;
—-| Description>. -
——| The number of bits needed for an object of type Sample_Record_Type.
—-=| It is a shame to have to hard-wire the size like this rather than rely on the
~~| 'Size attribute.
——| However, 'Size is not egal in record representation clauses.
—=|| Description>

Sample_Class: constant Class.Class_Type
:= Class. The_Class_Version_Ol ("Samplc”);
—=| Description>
——| T'his is used by the resource manager to determine the set of resources
——| available for a Sample object.
==|| Description>

procedure Create_The Widget_or
(Object: in out Sample_Type);

BR24 Final Report
D613=1 1000 _ 34

CDRE 01000 The BOEING Company CDRL 01000
TASK BR24

end Sample_Private;

‘The "private spec” is where the types for actually storing the class data are defined.
In this case, Sample_Record Type helds the data for Sample_Type. The
application programmer never necds to declare anything as a Sample_Record_Type
—— but other SUITE classes do. The result is. that this type declaration must be in
a spec —= but it is better to have it in a different spec from the one used by the
application programmer.

Note that the data field in Sample_Record_Type to hold the Inner_Window
component is of the public (Access) rather than the private (Record) type. The
reason is that when the bedy of Sample references the Inner_Window component of
a Sample object, it might wish to invoke an operation on Inner_Window, which
takes the public type as parameicr.

As alrcady mentioned, each private spec includes an ipherited part and an added
part. ‘The inherited part, which represents the superclass information, is normally
the record associated with its superclass, which in the case of Sample_Type is
Component. Since Component has no data of its own, the record of Component’s
superclass, that is Resourced_Object, is used.

Each private spee should define a default value for its class. This value is not used
by the body of Sample, but it is uscd by any class that is a subclass of Sample (or
will be later on —— cxtensibility!) in the same way that Sample uses the delault
value of its superclass,

A.3 Body

with Class:

with Sample_Private;

with Unchecked_Conversion;
with Unchecked_Deallocation;
with X_ToolkiCIntrinsics_OSI;
with Xm_Widget_Set;

package body Sample is

subtype Sample_Record_Type is
Sample_Private.Sample_Record_Type;

type Sample_Record_Access_Type is access
Sample_Record_Type:

—- "These type conversions aflow access to the Sample_Record_Type

—- data liclds. .

function The_Sample_Record_Access_Version_Ol is new
Unchecked_Conversion

BR24 IFinal Report i
DG13-11000 35

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

(Source => Sample_Type,
Target => Sample_Record_Access_Type

function The_Sample_Version_Of is new Unchecked_Conversion
(Source => Sample_Record_Access_Type,
Target => Sample_Type

)s

procedure Create
(A_Sample: out Sample_Type;
With_ID: in ID.113_Type = ID.Default_Value;
-Activated: in Boolean = True) is .

Motil_Sample_Class:
constant X_ToolkiCIntrinsics_OSI-. Widget_Class
1= Xm_Widgel_Set. Xm_Row_Column_Widget_Class;

—— Declarations used to access the Sample record ficlds
—— and convert it to a Sample_Type.

The_Sample_Record_Access:
Sample_Record_Access_T'ype;

Its_ID: ID.ID_Type renames With_ID;

begin
The_Sample_Record_Access := new
Sample_Record_Type'(Sample_Private.Delault_Value);

—— Set the values lor the "Resourced_The_Sample” part of Object.
The_Sample_Record_Access. Inherited_Part. Added_Part
Jts_Widget_Class
= Motif_Sample_Class;

‘The_Sample := The_Sample_Version_Of (The_Sample_Record_Access);
~= Initializing The_Sample dircetly would have only initialized enough
—- space for the Core part, because Sample_Type is a derivation
—— of a pointer to Core.

~— Sct the values for the “core” part of The_Sample.

The_Samplelis_ID := Its_ID;

The_Samplets_Class ;= Sample_Private.Sample_Class;
[

exception

BR24 Final Report
D613-11000 36

CDRL 01000 The BOEING Company:
TASK BR24

when Storage_Lirror =>
raise QuLOf_Memory;
end Create;

procedure Destroy
(The_Sample: in out Sample_Type) is

procedure Do_Destruction_Of is new Unchecked_Deallocation
(Object=> Sample_Record_Type.
Name => Sample_Record_Access_Type);

The_Sample_Record_Access:
Samplc_Record_Access_Type :=
‘The_Sample_Record_Access_Version_Of (‘The_Sample);

begin
It ‘The_Samplc =.Null then
raise Object Not-Created;
else
Do_Destruction_Of (The_Sample_Record_Access);
The_Sample := null;
end if;
end Destroy;

—— Operations on the sample class’” "activity” state
procedure Activate
(The_Sample: in out Sample_Type) is

The=Sample_Record_Access:
Sample_Record_Access_Type 1= ‘
The_Sample_Record_Access_Version_Ol (The_Samplce);

begin
I The_Sample-= Null then
raise Object_Not_Created;
else
The_Sample_Record_Access.Added_Part. Active := True;
end if;
end Activate;

BR24 Final ,chorl
DGI3-11000

CDRL 01000

,,,{\

CDRL 01000 The BOEING Company. CDRL 01000
TASK BR24

procedure Deactivate
(The_Sample: in out Sample_Type) is separate;

function Is_Activated:
(The_Sample: Sample_Type) return Boolean is separate;

function The_Inner_Window_Of
(The_Sample: Sample_Type) return Component.Component_Type is separate;

procedure SeUThe_Inner_Window_Of
(The_Sample: in out Sample_Type;
To: in Component.ComponentU_Type) is separate;

end Sample;

All operations in SUITE -packages receive as a parameter an object of Core_Type
or a derivation of Core_Type. Core_Type is a pointer to the Core attributes. In
order to get to any other attributes, including Sample's own attributes, unchecked
type conversion must be performed. In the body of Sample, this is ‘'one by
invoking function The_Sample_Record_Access_Version_Of. Likewise, a call to this
function must be performed during Create so that enough space is allocated for an
entire Sample record, not just the Core attributes.*

All visible operations other than Create should [irst check to ensure that its object
parameter is non—-null,

An operation that inserts a SUITE component into another SUITIE component
(e.g. SetThe_Inner_.Window_Of) is the most difficult case to implement in
Motil/ X1, so it is presented and discussed separately from the rest of the body. .

A.3.1 A Component Insertion Operation

with Core;

with Resourced_Object;

with Resourced_Object_Private;

with Widget_List;

separalte (Samplce)

procedure SetCThe_Inner_Window_Of

(The_Sample: in out Sample_Type;
To: in Component.ComponentUlype) is

subtype Inner_Window_Type is Component.Component_Typc;

* Because a pointer 1o a Core object must be returned from the operation. the pointer 1o
the Sample record must be re-comverted to a pointer 1o Core before exiting he operation.

BR24 Final Report
DG613-11000 ’ 38

CDRL 01000 : The BOEING Company CDRL 01000
TASK BR24-

The_Inner_Window: fnner_Window_Type renames To;

subtype Resourced_ObjecCType is
Resourced_Object. Resourced_ObjecUType;

—— "I'ype conversions to allow-access o Inner_ Vindow record ficlds.
type Resourced_Object_Record_Access_Type is
access Resourced_ObjectPrivate. Rcmuru,d_()l)jc.ct_Rc,wrd Type;
function The_Resourced_Object_Version_Of is new Unchecked_(C onvcrsmn
(Source => Component.Component._Type,
Target => Resourced_Object_Record_Access_T'ype

'l'h::_l nner_Window_Record_Access:
Resourced_Object_Record_Access_T'ype
= The_Resourced_Object_Version_Of (The_Inner_Window);

-= T'ype conversions to allow access to the Core subclass components
—-— of The_Sample
The_Sample_Record_Access:
Sample_Record_Access_Type
= The_Sample_Record_Access_Version_OF (The_Sample);

—— There are two Inner_Window records referred to in this subroutine.
-= The first is the "workspace” component of The_Sample, and the second
—— is the Inner_Window parameter. This is the former of the two.
The_Objects_Inner_Window_Field: Inner_Window_Type
renames The_Sample_Record_Access. Added_Part Its_Inner_Window;
The_Inner_Window_Field_Record_Access:
Resourced_Object_Record_Access_Type;

function "=" (x, y: X_ToolkiC_Intrinsics_OSIF . Widget) return Boolean
renames X ToolkiCIntrinsics _OSFF."=";

begin
il The_Sample = Null then
raise Object_Nol_Created;
clse

The Sample_Record_Access. Added_Part.Its_Inner_Window
= The Inner_Window;
The_Inner_Window_Ficld_Record_Access
= The_Resourced _Object_Version _Of

BR24 Final Report)
DGI3-11000 39

CDRL 01000 The BOEING Company CDRL 01000
TASK 8824

(‘The_Sample_Record_Access.Added_Part.lts_Inner_Window);

—= This part deals with creation of the widget lor The_Inner_Window.
il The_Samnlc_Record_Access. Inherited_Part. Added_Part.Its_Resources
= X_Toolkit_Intrinsics_OSI*.Null_Widget then
—— The_Sample's widget hasn’t been created yet
—-— Save parent=child inlormation
- il The_Sample.lts_WidgetUl'ree =
Unordered_Unbounded_Managed_Tree.:mpty then
- —-= Create a new tree with application panel as its root and
- —-— the workspace’s tree as its subtree
- Widget_Tree.Operations. Add_Root
- (To_Make => The_Sample. lts_WidgetUT'ree,
- From_ltem => "T'he_Sample,
- And_Subtree => The_Inner_Window_Record. WidgetUTree

—_)’

- clse == The_Sample’s widget-tree already exists;
- —— Add the workspace as a new child
Widget List. Add_Object
(To_l.ist =>
The_Sample_Record_Access. Inherited_Part. Added_Part. Its_Children,
With_Value => Resourced_Object’ype(The_Inner_Window)
)
The_Inner_Window_Field_Record_Access.Added_Part.Its_Parent :=
Resourced_Object_T'ype(Core.Core_Type(The_Sample));
—— The_Sample is of Samplc type;
—— we need a Resourced_Object type.
- end if;

else == The_Sample’s widget eaists; Go ahead and create the Inner_Window
widget

== In the short term, this actually creates the widget

== In the medium term, this will do nothing and the widget will

—= be created elsewhere.

== In the long term, this will invoke a subroutine to create the

—— widget. '

The_Inner_Window_Ficld_Record_Access. Added_Part. Its_Resources
:= X_Toolkit_Intrinsics_OSI. X1_Crcate_Managed_Widget
(Name => ID.The_String_Version_Or (The_Inner_Window.Its_1D),

Class =>
The_Inner_Window_Record_Access. Added_Part. lls:_Widgcl_C “lass,
Parent =>
The_Sample_Record_Access. Inherited_Part. Added_Part. [ts_Resources

BR24 IYinal Report
D613~11000 40

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 ‘

);

end if;
end il
end ScUThe_Inner_Window_Of;

Until procedure variables are supported, this procedure just invokes an operation
to create the inner component’s Motif widget. This will usually be through a call of
Xt_Create_Managed_Widget, uniess Motif provides a convenience routine for the
desired widget class.

A.4 Private Body

with Sample;

with Resourced_Object;

with Unchecked_Conversion;
package body Sample_Private is

procedure Create_The_Widget_TFor
(Object: in out Sample.Sample_Type) is

—-= These declarations allow access to the Sample data
—— ficlds of Object.
subtype Sample_Type is Sample.Sample_Type;
type Sample_Record_Access_Type is access Sample_Record_Type;
function The_Sample_Record_Access_Version_Of is new
Unchecked_Conversion
(Source => Sample_Type,
Target => Sample_Record_Access_Type);
The_Sample_Record_Access:
Sample_Record_Access_Type
= The_Sample_Record_Access_Version_Of (Object);

—-= Objeets needed to create the top=level (application) shell
Some_Class: constant String := "Sample_class”;

——"These declarations provide direct aceess to Resourced_Object fields.
subtype Resourced_Object_Type is Resourced_Object.Resourced ()bju,l_lypc,,
type Resourced_Object_Record_Access_T'ype is access

Resourced_Object_Private.Resourced_Object_Record_Type;
[unction The_Resourced_Record_Access_Version_Of is new

Unchecked_Conversion

(Source => Sample_Type,
Target => Resourced_Object_Record_Access_T'ype);

BR24 Final Report ,
NG13-11000 41

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

‘The_Resourced_Version_OI_Object: Resourced_ObjectUType :
Resourced_Object_Type (Object);
—= Holds value of (checked) type conversion from File_Sclection_Type.
The_Sample_Resources: .
Resourced_Object.Resources_Type;
—- Holds the Xt resources (widget) data tor Object.

—= The object that contains Object.

‘The_Parent: Resourced_ObjectType
:= Resourced_Object_Type(The_Parent_Of (Object));
—- The_Parent_Of inherited {rom Resourced_Object.

begin —— (Create_The_Widget_I‘or)
-— Create the Sample's widget.
The_Sample_Resources :=
X_ToolkitIntrinsics_OSI*.X(_Create_Managed_Widget
(Name => ID.The_String_Version_Or
(Object.Its_ID), .
Class =>Sample.The_Widget_Class_Orl (Object),
Parent => Resourced_Object. The_Resources_OF (The_Parent)
);
SetUThe_Resources_Of
(Object, To => The_Samplc_Resources);
-— Operation inherited from Resourced_Object
end Create_The_Widget_For;

end Sample_Private;

BR24 Final Report
DG13-11000 42

TASK BR24

The Boeing Company

ACTIVE SHEET RECORD
ADDED SHEETS ADDED SHEETS
R| SHEET NO.| R| SHEET | R R| SHEET | R| SHEET | R
SHEET | E E NO. E} SHEET | E NO. E NO. E
NO. \Y Y \Y NO. \Y \ \Y
L L L L L L
T T T T T T
R R R R R R
1 28
2 29
3 30
4 31
5 32
6 33
7 34
8 35
9 36
10 37
11 38
12 39
13 40
14 41
16 42
16 43
17 44
18
19
20
21
22
23
24
25
26
27

D613-11000

TASK BR24

THE BOEING compANY

REVISIONS
LTR DESCRIPTION DATE | APPROVAL
D613-11000 44

